917 research outputs found

    Domain wall resistance in CoFeB-based heterostructures with interface Dzyaloshinskii-Moriya interaction

    Full text link
    We have studied the domain wall resistance in W/Ta/CoFeB/MgO heterostructures. The Ta layer thickness is varied to control the type of domain walls via changes in the interfacial Dzyaloshinskii Moriya interaction. We find a nearly constant domain wall resistance against the Ta layer thickness. Adding contributions from the anisotropic magnetoresistance, spin Hall magnetoresistance and anomalous Hall effect describe well the domain wall resistance of the thick Ta layer films. However, a discrepancy remains for the thin Ta layer films wherein chiral N\'eel-like domain walls are found. These results show the difficulty of studying the domain wall type from resistance measurements

    Spin-orbit torque switching without external field with a ferromagnetic exchange-biased coupling layer

    Full text link
    Magnetization reversal of a perpendicular ferromagnetic free layer by spin-orbit torque (SOT) is an attractive alternative to spin-transfer torque (STT) switching in magnetic random-access memory (MRAM) where the write process involves passing a high current across an ultrathin tunnel barrier. A small symmetry-breaking bias field is usually needed for deterministic SOT switching but it is impractical to generate the field externally for spintronic applications. Here, we demonstrate robust zero-field SOT switching of a perpendicular Co90Fe10 (CoFe) free layer where the symmetry is broken by magnetic coupling to a second in-plane exchange-biased CoFe layer via a nonmagnetic Ru spacer. The preferred magnetic state of the free layer is determined by the current polarity and the nature of the interlayer exchange coupling (IEC). Our strategy offers a scalable solution to realize bias-field-free SOT switching that can lead to a generation of SOT-based devices, that combine high storage density and endurance with potentially low power consumption.Comment: 6 pages,3 figures, first submitted on 31st July 201

    The spin Hall effect of Bi-Sb alloys driven by thermally excited Dirac-like electrons

    Full text link
    We have studied the charge to spin conversion in Bi1−x_{1-x}Sbx_x/CoFeB heterostructures. The spin Hall conductivity (SHC) of the sputter deposited heterostructures exhibits a high plateau at Bi-rich compositions, corresponding to the topological insulator phase, followed by a decrease of SHC for Sb-richer alloys, in agreement with the calculated intrinsic spin Hall effect of Bi1−x_{1-x}Sbx_x alloy. The SHC increases with increasing thickness of the Bi1−x_{1-x}Sbx_x alloy before it saturates, indicating that it is the bulk of the alloy that predominantly contributes to the generation of spin current; the topological surface states, if present in the films, play little role. Surprisingly, the SHC is found to increase with increasing temperature, following the trend of carrier density. These results suggest that the large SHC at room temperature, with a spin Hall efficiency exceeding 1 and an extremely large spin current mobility, is due to increased number of Dirac-like, thermally-excited electrons in the LL valley of the narrow gap Bi1−x_{1-x}Sbx_x alloy

    Spin Hall effect from hybridized 3dd-4pp orbitals

    Full text link
    Electrical manipulation of magnetization by spin-orbit torque (SOT) has shown promise for realizing reliable magnetic memories and oscillators. To date, the generation of transverse spin current and SOT, whether it is of spin Hall effect (SHE), Rashba-Edelstein effect or spin-momentum locking origin, relies primarily on materials or heterostructures containing 5dd or 6pp heavy elements with strong spin-orbit coupling. Here we show that a paramagnetic CoGa compound possesses large enough spin Hall angle to allow robust SOT switching of perpendicularly-magnetized ferrimagnetic MnGa films in CoGa/MnGa/Oxide heterostructures. The spin Hall efficiency estimated via spin Hall magnetoresistance and harmonic Hall measurements is +0.05±\pm0.01, which is surprisingly large for a system that does not contain any heavy metal element. First-principles calculations corroborate our experimental observations and suggest that the hybridized Co 3dd - Ga 4pp orbitals along R-X in the Brillouin zone is responsible for the intrinsic SHE. Our results suggest that efficient spin current generation can be realized in intermetallic by alloying a transition metal with a pp-orbital element and by Fermi level tuning.Comment: 17 pages, 4 figures, Supplementary information provide

    Circular photogalvanic effect in Cu/Bi bilayers

    Full text link
    We have studied the circular photogalvanic effect (CPGE) in Cu/Bi bilayers. When a circularly polarized light in the visible range is irradiated to the bilayer from an oblique incidence, we find a photocurrent that depends on the helicity of light. Such photocurrent appears in a direction perpendicular to the light plane of incidence but is absent in the parallel configuration. The helicity dependent photocurrent is significantly reduced for a Bi single layer film and the effect is nearly absent for a Cu single layer film. Conventional interpretation of the CPGE suggests the existence of spin-momentum locked band(s) of a Rashba type in the Cu/Bi bilayer. In contrast to previous reports on the CPGE studied in other systems, however, the light energy used here to excite the carriers is much larger than the band gap of Bi. Moreover, the CPGE of the Cu/Bi bilayer is larger when the energy of the light is larger: the helicity dependent photocurrent excited with a blue light is nearly two times larger than that of a red light. We therefore consider the CPGE of the Cu/Bi bilayer may have a different origin compared to conventional systems

    Anomalous spin Hall magnetoresistance in Pt/Co bilayers

    Full text link
    We have studied the spin Hall magnetoresistance (SMR), the magnetoresistance within the plane transverse to the current flow, of Pt/Co bilayers. We find that the SMR increases with increasing Co thickness: the effective spin Hall angle for bilayers with thick Co exceeds the reported values of Pt when a conventional drift-diffusion model is used. An extended model including spin transport within the Co layer cannot account for the large SMR. To identify its origin, contributions from other sources are studied. For most bilayers, the SMR increases with decreasing temperature and increasing magnetic field, indicating that magnon-related effects in the Co layer play little role. Without the Pt layer, we do not observe the large SMR found for the Pt/Co bilayers with thick Co. Implementing the effect of the so-called interface magnetoresistance and the textured induced anisotropic scattering cannot account for the Co thickness dependent SMR. Since the large SMR is present for W/Co but its magnitude reduces in W/CoFeB, we infer its origin is associated with a particular property of Co

    Structure, site-specific magnetism and magneto-transport properties of epitaxial D022_{22} Mn2_2Fex_xGa thin films

    Full text link
    Ferrimagnetic Mn2_2Fex_xGa (0.26≤x≤1.12)(0.26 \leq x \leq 1.12) thin films have been characterised by X-ray diffraction, SQUID magnetometry, X-ray absorption spectroscopy, X-ray magnetic circular dichroism and M\"{o}ssbauer spectroscopy with the aim of determining the structure and site-specific magnetism of this tetragonal, D022_{22}-structure Heusler compound. High-quality epitaxial films with low RMS surface roughness (∼0.6\sim 0.6 nm) are grown by magnetron co-sputtering. The tetragonal distortion induces strong perpendicular magnetic anisotropy along the cc-axis with a typical coercive field μ0H∼0.8\mu_0 H\sim 0.8 T and an anisotropy field ranging from 66 to 88 T. Upon increasing the Fe content xx, substantial uniaxial anisotropy, Ku≥1.0K_\mathrm{u} \geq 1.0 MJ/m3^3 can be maintained over the full xx range, while the magnetisation of the compound is reduced from 400400 to 280280 kA/m. The total magnetisation is almost entirely given by the sum of the spin moments originating from the ferrimagnetic Mn and Fe sublattices, with the latter being coupled ferromagnetically to one of the former. The orbital magnetic moments are practically quenched, and have negligible contributions to the magnetisation. The films with x=0.73x=0.73 exhibit a high anomalous Hall angle of 2.52.5 % and a high Fermi-level spin polarisation, above 5151 %, as measured by point contact Andreev reflection. The Fe-substituted Mn2_2Ga films are highly tunable with a unique combination of high anisotropy, low magnetisation, appreciable spin polarisation and low surface roughness, making them very strong candidates for thermally-stable spin-transfer-torque switching nanomagnets with lateral dimensions down to 1010 nm.Comment: 11 pages, 11 figure

    Magnetization switching induced by spin-orbit torque from Co2MnGa magnetic Weyl semimetal thin films

    Full text link
    This study reports the magnetization switching induced by spin-orbit torque (SOT) from the spin current generated in Co2MnGa magnetic Weyl semimetal (WSM) thin films. We deposited epitaxial Co2MnGa thin films with highly B2-ordered structure on MgO(001) substrates. The SOT was characterized by harmonic Hall measurements in a Co2MnGa/Ti/CoFeB heterostructure and a relatively large spin Hall efficiency of -7.8% was obtained.The SOT-induced magnetization switching of the perpendicularly magnetized CoFeB layer was further demonstrated using the structure. The symmetry of second harmonic signals, thickness dependence of spin Hall efficiency, and shift of anomalous Hall loops under applied currents were also investigated. This study not only contributes to the understanding of the mechanisms of spin-current generation from magnetic-WSM-based heterostructures, but also paves a way for the applications of magnetic WSMs in spintronic devices.Comment: 15 pages, 4 figure

    The Spin Nernst effect in Tungsten

    Full text link
    The spin Hall effect allows generation of spin current when charge current is passed along materials with large spin orbit coupling. It has been recently predicted that heat current in a non-magnetic metal can be converted into spin current via a process referred to as the spin Nernst effect. Here we report the observation of the spin Nernst effect in W. In W/CoFeB/MgO heterostructures, we find changes in the longitudinal and transverse voltages with magnetic field when temperature gradient is applied across the film. The field-dependence of the voltage resembles that of the spin Hall magnetoresistance. A comparison of the temperature gradient induced voltage and the spin Hall magnetoresistance allows direct estimation of the spin Nernst angle. We find the spin Nernst angle of W to be similar in magnitude but opposite in sign with its spin Hall angle. Interestingly, under an open circuit condition, such sign difference results in spin current generation larger than otherwise. These results highlight the distinct characteristics of the spin Nernst and spin Hall effects, providing pathways to explore materials with unique band structures that may generate large spin current with high efficiency

    Current-induced modulation of interfacial Dzyaloshinskii-Moriya interaction

    Full text link
    The Dzyaloshinskii-Moriya (DM) interaction is an antisymmetric exchange interaction that is responsible for the emergence of chiral magnetism. The origin of the DM interaction, however, remains to be identified albeit the large number of studies reported on related effects. It has been recently suggested that the DM interaction is equivalent to an equilibrium spin current density originating from spin-orbit coupling, an effect referred to as the spin Doppler effect. The model predicts that the DM interaction can be controlled by spin current injected externally. Here we show that the DM exchange constant (DD) in W/CoFeB based heterostructures can be modulated with external current passed along the film plane. At higher current, DD decreases with increasing current, which we infer is partly due to the adiabatic spin transfer torque. At lower current, DD increases linearly with current regardless of the polarity of current flow. The rate of increase in DD with the current density agrees with that predicted by the model based on the spin Doppler effect. These results imply that the DM interaction at the HM/FM interface partly originates from an equilibrium interface spin (polarized) current which can be modulated externally
    • …
    corecore